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The two-dimensional turpulent wall-jet 

By W. H. SCHWARZAND W. P. COSART 
Department of Chemical Engineering, Stanford University, Palo Alto, California 

(Received 1 November, 1960) 

With the aid of a hot-wire anemometer, the mean velocity distribution of the 
incompressible, turbulent, plane wall-jet has been examined in some detail. 
As previously reported, this fully developed boundary layer belongs to the class 
of self-preserving flows. Over the entire range of experimental conditions, a 
single velocity scale (Dm) and a single length scale (6) seem to correlate all the 
velocity data. Further, it is shown theoretically that S must vary as x, and Dm 
must vary as xa over this range. The exponent a has been empirically determined 
as - 0.555. Values of the Reynolds shear stress, which are proportional to 58, 
the Boussinesq exchange coefficient 6, and the shear stress at  the wall have been 
evaluated. The Reynolds number based on the maximum velocity and the 
thickness of the boundary layer varied from 22,000 to 106,000. 

1. Introduction 
The wall-jet is described as a jet of fluid which impinges onto a wall at an angle 

from 0 to 90 degrees. The region of interest is the fully developed boundary layer 
which occurs after the stagnation flow and the turbulent transition regions, and 
has both a solid boundary and a free boundary of the same fluid as the jet. The 
name wall-jet seems to have been ascribed by Glauert (1956), although the terms 
partially open jet, surface jet, and submerged jet have been used by Forthmann 
(1934), Zerbe & Selna (1946) and Poreth & Cermak (1959). 

Since the boundary conditions on the surface jet are such that the velocity at 
the wall and also outside the boundary layer are zero, the velocity profile must 
have a maximum. Further, this flow is of the self-preserving class of shear flows 
such as jets, wakes, and free-mixing layers. The free and solid boundaries generate 
considerable interest, since the flow will have both a jet-like property and also 
be influenced by the wall. A sketch of the tangential wall-jet is shown in figure 1, 
which includes a fully developed profile. 

The earliest known work on the plane wall-jet was done by Forthmann (1934), 
apparently to complement his investigation of the plane free jet and partially 
expanding jet. Forthmann observed the self-preserving nature of the wall-jet, 
and that the boundary-layer thickness varied linearly with x and the maximum 
velocity varied inversely as the half power of x. Further, he determined from the 
data that the velocity in the inner layer varied as the one-seventh power of the 
distance from the wall. 

Glauert (1956) has examined theoretically the similarity problem of the 
laminar and turbulent, radial and plane wall-jets. The velocity distribution of 
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the turbulent radial wa d -jet and the variation of velocity and length scales 
with downstream position has been measured by Bakke (1957). He found that 
the velocity scale varied as a power of 2 with exponent - 1.12 0.03 and the 
length scaIe as 0-94 2 0.02. The velocity profiles showed a self-preserving character 
in both the inner and outer layers. 

tY  
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FIGURE 1. Tangential wall-jet. 

The measurement of wall shear stress in a tangential jet was done by Sigalla 
(19583). Data were correlated in a manner analogous to that of a turbulent boun- 
dary layer on a flat plate. The boundary-layer thickness was foundexperimentally 
to vary linearly, making an angle of 3.7 degrees with the plate and passing 
approximately through the centre of the outlet nozzle of the jet. Further, it was 
found that the velocity scale varied as a power of x with an exponent of minus 
one-half. 

2. Theoretical development 
The equations of motion for a steady, plane, turbulent, incompreesible flow 

with constant physical properties and negligible energy dissipation may be 
written as - 

(1) 
-ai7 - a 0  lap a aV - au - u-+v- = --- +- v--u2 +- v--uv , 

ax ay pax ax[ ax ] :y[ ay ] 
- a V  - a V  lap a a7 - a7 - u-+p-=---  +- v--uv +- v--v2, a3 ay pay ax[ ax ] :[ ay 1 

auw avw 
ax ay 

0 = -+-. 
The continuity equation is written 

ai7 a7 -+- = 0. 
ax ay 

When the boundary-layer approximations are applied to (I), we obtain 

-ai7 -an a - - auv a 2 0  
U-+V-+-(u2--v2)+-= v-. ax ay ax a Y  aY2 

(3) 

(4) 
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If (6) are substituted into ( 5 ) ,  with suitable rearrangement, the following form is 
obtained 

(4 (el (f 1 (9) (h)  
If the flow is self-preserving, the functions f(q), g l ( q ) ,  g12(r]), and g2(q) are inde- 
pendent of x, and hence the solution of (7) requires that the coefficients of the 
universal functions be either non-zero constants or zero. For anon-trivialsolution, 
consider the ratios to be non-zero. The non-repetitive coefficients are 

s duo as V 
u, dx ' ax u,s- - and - -__ 

Each of these coefficients must be equal to a constant, hence 

S =  C2z and U, = C,s-l. (9,10) 

This result uses the viscous shear stress term (h). 
Now it is a well-known fact that in any turbulent flow, the viscous stress is 

small compared to the turbulent shear stress (term ( g ) ) ,  except very close to a 
wall. In  the present investigation, the viscous shear stress was only 3 yo of the 
turbulent shear stress even at 0.2 mm from the wall, which was the closest point 
at which the experimental equipment could be used. It seems reasonable there- 
fore to neglect term (h). Then the only non-repetitive constant coefficients are 

8 dU, 
and -- as 

& u, ax * 

Solving these two equations gives 

8 = c2 u, = c,+, (12) 

or that the length scale varies linearly with z and the velocity scale varies as a 
power of the downstream direction. From the above analysis, i t  is seen that the 
flow ie unlikely to have the same self-preserving character over the entire width 
of the boundary layer. Very near the wall, the viscous terms will dominate and 
the velocity scaling factor will have a different x-variation from that of the outer 
flow. However, for the regions of the flow that were examined, the viscous term 
was negligible. 

If (5) is integrated with respect to y from 0 to 00, and (4) is used, we find that 

- _  
Since u2 - wz << 8 2 ,  and making use of (6), (13) becomes 

(14) 
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Then, with the forms of the x-variation of 6 and U,, this may be written 

W .  H .  Schwarz and W .  P.  Cosart 

2 = - ~ ; ~ , x z a ( 2 a +  ~ ) / ~ ~ f z ( q ) d q .  
P 

A skin friction coefficient may be defined by 

Then 

From (15) ,  it  is apparent that the exponent of the x-variation of the velocity 
scale must be less than - i. If it were not, the shear stress on the wall would be 
either zero or negative, which are both impossible. 

Laminar Turbulent - w 
uo 6 uo 6 

Plane jet X-) X* X-* X 
Plane wall-jet 2-* XS 2-0*655*  X 
Circular jet X-1 X X-1 X 

Flat plate (dp/dx = 0) XO ' x* XO X* 

Circular wall-jet X - t  XP x-1.12 xOp.94t 

* Data of Cosart (1960). t Data of Bakke (1957). 

TABLE 1 

From the equations of motion, a relationship between the exponents of the 
x-variation of the length and velocity scales has been obtained. However, a 
second relation is necessary if a is to be determined uniquely. For a free jet flow, 
this relation is obtained from the constancy of the flux of momentum. In  the 
Blasius problem, the velocity scale varies as the free stream velocity or is a con- 
stant. Similarly, when the potential flow over a solid surface varies as xm, then 
the velocity scale will have the same variation. Glauert (1956) has succeeded in 
obtaining a second relation for the laminar wall-jet by noting that the 'flux of 
exterior momentum flux' is constant. This approach is not applicable to the 
turbulent wall-jet. The results of various similar flows are compared in table 1 .  

Now (7) may be rearranged to give (neglecting the viscous term) 

Then substituting (12)  into (18) ,  we obtain 

The function ql2(q) is the universal turbulent shear-stress function. 



Two-dimensional turbulent wall-jet 485 

The Boussinesq exchange coefficient may be defined by 

au - 

aY 
€-  = -uv. 

Therefore, from (6) and defining 8 as e/UoS, we have that 

3. Experimental method 
The wind-tunnel facility used in the investigation consisted of a variable- 

speed blower, a diffuser section, a plenum chamber or calming section, a con- 
traction and the flat plate. The blower was driven by a variable-speed DC motor 
and produced a range of velocities at the outlet of the contraction from about 
0 to 85ft./sec. The diffuser and calming section contained a number of screens 
to reduce turbulence, produce a uniform velocity distribution, and prevent 
separation in the diffuser. The contraction had an area ratio of 24 to 1 with a 
24 x 1 in. outlet, and further served to produce a uniform and low turbulence 
velocity distribution at the outlet. The contraction was smoothly joined to a 
flat plate so that the flow was tangential to the plate. The plate had a smooth 
aluminium sheet attached to it and was approximately 6ft. long. Side-boards 
were attached to the plate to prevent the flow from spilling over the edge and 
thus interfering with the two-dimensionality of the flow. 

All mean velocities of the wall-jet boundary layer were measured with a hot- 
wire anemometer. The wire element was Wollaston drawn platinum, 0.00025 in. 
in diameter. The actual position of the wire from the plate was determined with 
a cathetometer, sensitive to within & mm. The wire was easily visible with the 
telescope and cross-hairs. The actual distance of the wire from the plate was 
determined by several observations of the wire and its reflected image. The down- 
stream position of the wire from the nozzles was measured with a common pocket 
tape to within gin. 

4. Results 
A series of velocity tranverses were taken with nozzle speeds of 27, 40, 60, 

and 83 ft./sec over a range of distance downstream of the outlet from 1.5 to 5.5 ft. 
A typical set of data is shown in figure 2. The curve drawn through the points 
is the universal curve which is explained below. For the set of runs, values of the 
maximum velocity and boundary-layer thickness are listed in table 2. 

All the mean velocity data were plotted together in dimensionless form and a 
single curve drawn through the points. This universal curve is shown in figure 3. 
From figure 2, typical departures of the data from the universal curve may be 
seen. 

The variation of the boundary-layer thickness with distance has been pre- 
viously shown to be proportional to the distance from the virtual origin and is 
of the form given by (12). This equation may be written as 

s = cz(x’+IL^o), (23) 
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FIQW 2. Velocity profile: the data points were taken with an outlet nozzle velocity of 
83 ft./secandatfourdownstreampoeitions. @,x' = 2.0%; 0, x' = 2.6 ft.; n,x'= 3.0ft.; 
a, Z' = 3-6ft. 
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FIQURE 3. Universal velocity profile: - , experimental data; 

---- ,se~h* (7-0.14); +, e ~ p  [0*937(1-0.14)*]. 
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where zo is the distance from the outlet of the wind tunnel to the point where 
the turbulenoe is assumed to originate (the virtual origin). Further, the variation 
of the maximum velocity with downstream position may be written as 

Dm = C1(x'+xo)Q. (23) 

10 I I I 

2 4 6 8 
2 (ft.) 

FIGURE 4. Variation of velocity scale: 0,  Vo = 27 ft./sec.; 0, Vo = 40 ft./sec; 
m, Vo = 60 ft./sec; 8, Vo = 83 ft./sW. 

VO 
(ft./sec) 

27 
40 
60 
83 

Average 
value 

2 0  Cl 
(ft.) (ft.l-"/sec) G, = h(Ro) a RO fl(R0) 
0.60 36.4 0.0861 - 0.60 f 0.09 13,610 4.67 
1.297 46.8 0.0694 - 0.50 f 0.09 20,100 4-06 
1.077 88.7 0.0661 - 0.62 & 0.08 30,000 6.90 
0.748 113.3 0.0607 - 0.60 f 0.04 41,600 6.95 
0.931 - 0.06782 - 0.556 - 5.396 

TABLE 2 

Values for the virtual origin xo and the constant C, were determined from (22) 
for each outlet velocity. Then the exponent a and the constant C, were obtained 
from (23) and are given in table 2. These values were obtained by means of a 
least squares fit of the experimental data and the 95 yo confidence intervals were 
evaluated. A plot of Dm versus x is shown in figure 4, for the various outlet 
velocities. 
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The inner layer 

Some of the velocities measured in the inner layer are presented in figure 5. 
The plot has logarithmic scales and shows alum versus y/6. It is readily seen that 
over the whole range of experimental conditions, the data are correlated with the 
velocity scale urn and the length scale 6. Near the wall, scatter of data was 
appreciable. This is due to the extremely small distance from the wall (of the 
order of 0-2mm). However, from this plot and also a linear plot (not shown), 
there does not appear to be any systematic variation within the data. It is 
therefore concluded that the same velocity scale and length scale applies to the 
whole boundary layer except very close to the wall (7 < 0.005). 

0 -2 I I I I I  I I I I I  
0.002 0.004 0.008 0.02 0.04 0.08 0.2 

YlS 

FIGURE 5. The inner layer: the data points shown span the entire outlet velocity 
range and downstream positions. 

VO (ft ./sec) x' (ft.) Vo (ft./sec) x' (ft.) 

0 26.0 2.0 a- 60-7 5-0 
26.2 4.5 D 60.3 5.5 
34.9 2.5 -0 83.4 4.5 

0 
A 

40.0 2.5 -a 83.1 5-0 
0- 40.2 3.0 A 86.1 5.5 
0 40.2 4.5 

The only previous measurements of the velocity distribution in the inner 
layer of the two-dimensional wall-jet were obtained by Forthmann (1934). 
He concluded that the velocity profile varied as the classic one-seventh power 
of the distance from the wall. The present results show the exponent to be 
1/(14k 1). Nearly 90% of the inner layer follows this relationship, i.e. for 7 
lying between approximately 0.01 and 0.13. The curve deviates from this rela- 
tion near the maximum and near the wall. 

The one-seventh power law adopted by Forthmann (1934), Glauert (1956), 
and Sigalla ( 1 9 5 8 ~ )  seems to have been obtained by considering the inner layer of 
the wall jet to be analogous to the turbulent boundary layer. As a first-order 
engineering approximation this analogy may be used, if the proper adjustments 
are made. However, there are certain important dissimilarities between the 
turbulent boundary layer and the inner layer of the wall-jet. The most important 
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difference is that of the intermittent nature of the outer part of the turbulent 
boundary layer. For a t  least 60% of the thickness of the turbulent boundary layer 
the flow is characterized by alternate periods of turbulent and non-turbulent 
flow. Another point of difference lies in the modification of the structure of the 
inner layer of the wall-jet by the turbulence in the outer layer. Further, the skin- 
friction coefficient of a turbulent boundary layer varies in a manner different 
from that of the wall-jet. These factors may lead to serious discrepancies for 
certain conditions, if the inner layer of the wall-jet is considered to be com- 
pletely analogous to the turbulent boundary layer. 

Dimensional analysis 
Since the maximum velocity is a function of the downstream distance from the 
virtual origin, the outlet velocity, the viscosity and density of the fluid and the 
width of the nozzle, dimensional analysis shows that 

Urn/& = f (Zldo, W o / 4 .  

iTn/v,  = (x/do)afl(Ro). (25) 

fl(R0) = ClGlV,. (26 )  

(24) 

Using (12), (24) may be rewritten as 

Hence comparing (12) and ( 2 5 ) ,  it  is found that 

The values of fl(Ro) are listed in table 2 for the several outlet velocities. There 
is no apparent functional variation with Reynolds number (R,) of either the 
virtual origin or the function fl(Ro). If the average values of fl(Ro), a, and xo are 
determined for the four outlet conditions, (25) may be written as 

Urn/& = 5*395(x’/d0 + 1 1.2)-0565. (27) 

Similarly, the boundary-layer thickness is a function of the outlet velocity of 
the nozzle, the distance from the virtual origin, the viscosity and density of the 
fluid, and the width of the nozzle. Hence, the dimensionless equation is written 

w, = h(x/do, Ro). (28) 

w o  = (x/do) hl(R0). (29) 

Q2 = hl(R0). (30) 

From the concept of self-preservation, (28) may be rewritten as 

Therefore comparing ( 12) and (29), 

From the values of C, listed in table 2 ,  there does not seem to be any systematic 
change in hl(Ro) as the outlet Reynolds number is varied. The average of hl(Ro) 
is found to be 0.0678, and the equation (28) is written 

(31) 

Equations (27) and (31) are approximate formulae and are dependent on the 
individual system. In  particular, the location of the virtual origin is a function 
of many conditions, such as the free-stream turbulence in the jet, the wall rough- 
ness, vibration, sound, and in fact, all the variables which affect the transition 

6/do = O.O678(~’/d, + 11.2). 
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of a laminar flow to a turbulent flow. Hence, each system will have its own 
specific value for the virtual origin and the virtual origin may vary with the outlet 
Reynolds number. From these experiments, there is no determinate functional 
variation of the virtual origin with the outlet Reynolds number, and the average 
value is used. 

If the outlet Reynolds number differs significantly from the range 13,000 to 
40,000, the functions fl(Ro) and hl(Ro) may change. However these functions 
at most vary slowly with the outlet Reynolds number. 

The angle between the locus of points of the boundary-layer thickness and the 
plate was computed from (31) and found to be 3.8". This value may be compared 
to that of Sigalla (1958a) which was 3.7". Since Sigalla's measurements were in 
the range of R, lying between 20,000 and 50,000, this is not surprising. 

Turbulent shear stress 

The Reynolds shear stress may be written as 

rt = -puv. 

Also, using (19), (30), the average values of hl(R,) and table 2, the dimensionless 
correlation function becomes 

(32) 
- 

This function has been evaluated graphically utilizing the universal velocity 
function and is shown in figures 6 and 7. Since the contribution to the total shear 
stress from the viscous terms is very much smaller than the turbulent shear stress 
(of the order of 3 % very close to the wall), the total shear stress at  any 7 is very 
closely approximated by (32). A dimensionless shear stress is then defined as 

and hence Cj,q = - 291,(7)* (35) 

From figure 6, it is seen that the correlation function is not equal to zero at  
qln which corresponds to the point where the maximum velocity occurs. The two- 
layer theory becomes suspect since the correlation function 55 is zero at  the outer 
edge of a turbulent boundary layer and a t  the centre-line of a symmetrical free 
jet. These two conditions are not met in the turbulent wall-jet. Further, the shear 
stress at  the point where the maximum velocity occurs is non-zero, at least to 
the accuracy of the present data. This phenomenon is a consequence of the 
asymmetrical shape of the velocity distribution. 

The Boussinesq exchange coegicient 
The dimensionless exchange coefficient or eddy diffusivity has been previously 
defined in (21). The experimental determination of this quantity involved the 
graphical differentiation of the universal velocity profile. Also, as previously 
mentioned, the dimensionless correlation function g1,(7) was obtained by graphi- 
cal integration. These numerical techniques, especially the evaluation of the 
derivative, often produce results which are moderately inaccurate, even when 
exceptional care is taken with the data. 
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Values of the exchange coefficient %, as a function of g, were evaluated as 
mentioned above, and the smoothed data are plotted in figures 6 and 7 for the 
outer and inner layers, respectively. 

I 
I 

/ 

/ 
/ 

J- LC 6.0 - 
("2 f I 

/ 

71 

FIGURE 6. Universal correlation function and exchange coeffioient. 

-60 

7 
FIGURE 7. Universal correlation function and exchange coefficient 

for the inner layer. 

In  the outer layer, the eddy diffusivity shows a similar behaviour to that 
observed in a two-dimensional free jet. The values of the exchange coefficient 
are fairly constant in the middle portion and diminish toward the outer edge. 
However, toward the velocity maximum or where the derivative of the velocity 
becomes zero, the eddy diffusivity will go to infinity since a finite value is 
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divided by zero. Also, the eddy diffusivity will change sign near the velocity 
maximum since g12(7) changes sign and hence tends towards minus infinity. This 
obviously presents some interesting operational difficulties when the concept of 
an exchange coefficient is employed. 

In  the inner layer, the functional behaviour of the eddy diffusivity from the 
wall outward somewhat resembles that of a turbulent boundary layer, except 
that as vm is approached, the coefficient tends toward positive infinity. In  a 
turbulent boundary layer or a turbulent pipe flow, the UV correlation tends to 
zero a t  the outer edge and the centre line, respectively. The form of the exchange 
coefficient is then indeterminate However, L’Hospital’s rule may be applied 
and it may be shown that the coefficient tends towards a constant if the velocity 
distribution is parabolic where the derivative goes to zero. For the wall-jet, the 
uv correlation is non-zero, hence the form of C will tend towards infinity. 
- 

5. Law of the wall 

compressible flow is of the form 
It has been postulated that near a smooth wall, the velocity profile of an in- 

up* = k(yU*/v), (36) 

where U* is the friction velocity and is equal to (7&)*. Very near the wall, in 
the laminar sublayer, (36) has the form 

a/u* = yu*/v .  (37) 

This is obtained from the assumption that the sublayer is so thin that the shear 
stress is constant across its width and hence the velocity is proportional to y, or 
conversely this behaviour defines the laminar sublayer. 

In  the outer layer of a turbulent flow, such as a pipe or boundary layer, the 
velocity assumes the form 

which is often called the velocity defect law. Since (36) and (38) overlap, (36) 

(39) 

must have the form 

in the overlap region. The constants A and B have been given by Clauser (1956) 
as 5.6 and 4.9, respectively, and were obtained from the compilation of data 
obtained in turbulent boundary layers with and without pressure gradients and 
in turbulent pipe and channel flows. 

(U--Um)/U* =j(y/S) (38) 

YU* A log -+ B 
U 
u* - V 
_ -  

The terms in (36) may be rearranged into the forms 

D 
- U* = 13.41f(q) = k($) = k(38-57~0.*4~&) (40) 

which are obtained from (15), (6) and ( l2) ,  and the average values of C,, C, 
and a. Butf(7) is a universal function of 7 and is independent of x and 6. There- 
fore, (36) cannot represent the data as long as the universal function applies, 
i.e. U/Um = f (7). Now, the velocity defect law may be rewritten as 

(41) 

_ -  

(0 - urn)/ u* = g(7) 
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Then, defining 

equation (41) may be rewritten 

(43) 

Hence the velocity defect law is linearly proportional to the present similarity 
law used to correlate the wall-jet data. 

The similarity law correlates the velocity data to the value of !q of at least 
0.01. If the corresponding value of yU*/v is estimated from equation (40), the 
value is 21.3 for V, = 27 ft./sec, x = 5ft., and v = 0.166 x 10-3ft.2/sec. This value 
lies well within the logarithmic region of (39), but (39) is not applicable since the 
similarity law will still correlate the data. 

A 'law of the wall' may still apply to the region very near the boundary of the 
turbulent wall-jet ; however, the constants obtained from measurements taken 
in turbulent boundary layers, pipe and channel flows appear to be inapplicable 
to the wall-jet flow. Unfortunately the present experimental technique did not 
allow a study of this inner inner-layer. 

6. The skin-friction coefficient 

and using the average value of hl(Ro). It was found that 
The skin-friction coefficient was evaluated from ( 17) by graphical integration 

Cf = 1 . 1 0 9 ~  (45) 

This is the average value for the present experimental conditions and it is indepen- 
dent of the downstream position and at most a slowly varying function of the 
outlet Reynolds number, R,,. 

This value is in conflict with the work of Sigalla (19583) who has correlated his 
data in the form 

Cf = 0.0565 (Um8rn/~)-&. (46) 

Equation (46) may be rearranged to  give 

cf = 0.0565(R)-t(8,/8)-*. 

R = Um8/. = C1C2 xa+llv, 
Cf (xO.445)-$ = (x)-O'111. 

Now since 

This equation gives the variation of the skin-friction coefficient with x according 
to Sigalla, using the present results for the variation of the length and velocity 
scales. However, (45) shows that the skin-friction coefficient is constant for the 
present set of measurements. 

I n  the present work, the Reynolds number of the boundary layer varied from 
about 22,000 to 106,000. If these extremes are substituted into (46) and Sm/8 
set equal to 0.14, C, will vary from 0.00743 to 0.00513. These values differ from 
the present results by about a factor of two. However, it might be mentioned that 
the absolute value of the skin-friction coefficient that was experimentally 
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determined is dependent on the quantity (2a+ 1). Since a is very close to - 3, 
this quantity can be in error, although the above-mentioned arguments are 
correct. 

The results of Sigalla are based on the analogy of the inner layer of a turbulent 
wall-jet to that of a turbulent boundary layer. Hence the skin-friction coefficient 
is considered to have the same functional form as that of the turbulent boundary 
layer, or the Blasius form. The present results do not indicate that relationship. 

Further, the skin-friction coefficients obtained by Sigalla were determined by 
the method of Preston (1954). It has been shown by Bradshaw (1959) that the 
Preston tube calibration is not independent of the pressure gradient. Sigalla 
calibrated his device in a pipe flow, hence in a pressure gradient, and used it in the 
wall-jet which is without pressure gradient. It is also noted that the primary 
assumption of the Preston method is that the ‘law of the wall’ applies to all 
turbulent flows near a wall. In the previous discussion, i t  has been shown that 
this assumption is not true for the turbulent wall-jet. 

7. The outer layer 
The universal velocity distribution in the outer layer is shown in figure 3. 

Also shown are curves of sech2 7 and exp[ - A(7 - 57,,J2]. It is seen that a substan- 
tial part of the data is not well represented by either functional form. The close 
fit of the two curves to the data at  the outer edge may be purely fortuitous, since 
no corrections for the effect of intermittency in the outer edge of the wall-jet 
have been applied. 

The velocity distribution for the plane wall-jet has been determined theor- 
etically by Glauert (1956) with the assumptions that the eddy diffusivity varies 
as @ in the inner layer, and is a constant in the outer layer. The 2-wise varia- 
tion of similarity parameters was considered to be the same for both layers. 
For the outer layer, a solution of the equations of motion was obtained which 
deviated only slightly from the square of the hyperbolic secant and the deviation 
probably lies well within the limits of experimental error. As a matter of fact, 
the solution of the equations of motion of a plane, turbulent, free jet give this 
variation, if it is assumed that the exchange coefficient is constant across the flow. 
It becomes apparent then why the true velocity distribution differs from Glauert’s 
work, by referring to figure 6. It is seen that the dimensionless exchange co- 
efficient deviates markedly from its constant value near the maximum point. 

8. Conclusions 
All mean velocity data, taken over a three and one-half fold variation in the 

downstream dimension and a threefold range of nozzle velocities, were found to 
be reduced to a single universal curve with the length scale S and the velocity 
scale urn. The correlation seemed to apply over the entire measured range, at 
least to a minimum value of 7 equal to 0.005. Further, it was shown with certain 
assumptions that the length scale must vary as x, the distance downstream from 
the virtual origin, and the velocity scale must vary as xa, where a was found equal 
to -0.555. The assumptions were that the mean velocity and the statistical 
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quantities u2, v2, and ZLV were self-preserving with the same scales, the viscous 
stresses were negligibly small, and the boundary-layer approximations were 
applicable. 

Empirical expressions were developed to correlate the length and velocity 
scales with the outlet velocity and widths of the nozzle, and the physical proper- 
ties of the fluid. 

The UV correlation as a function of the distance from the wall was computed 
from the mean velocity data assuming that it had self-preserving characteristics. 
Since there is a direct relation between the correlation function and the turbulent 
shear stress, which is practically equivalent to the total shear stress (viscous 
stresses are negligible), the shear-stress distribution in the turbulent boundary 
layer was determined. Of interest was the non-zero value of the shear stress or 
correlation function at the velocity maximum, which is due to the unsymmetrical 
shape of the velocity distribution. As a consequence, the measured values of the 
exchange coefficient or eddy diffusivity exhibit peculiar behaviour at this point, 
since a finite quantity is divided by a quantity which tends to zero in the limit. 

It is further concluded that the ‘law of the wall’ is not applicable to the turbu- 
lent wall-jet in the form that was obtained by experimentation in turbulent 
boundary layers, and turbulent pipe and channel flows. Also, the power-law 
representation commonly used for turbulent boundary layers to describe the 
mean velocity is appreciably modified in the wall-jet. Hence, present values of 
skin-friction coefficients differ from previous work, where the inner layer of the 
wall-jet was considered to be analogous to a turbulent boundary layer. The inner 
layer’s structure is modified from that of turbulent boundary layer by the pre- 
sence of the outer layer. 

In  the outer layer of the wall-jet and near the position of maximum velocity, 
there is a considerable difference in the velocity profile from that of a free jet 
or a mixing layer. This is caused primarily by the effect of the inner layer on the 
outer layer. Further, the square of the hyperbolic secant will not represent the 
velocity distribution since the value of the eddy viscosity is not constant across 
the flow, and approaches infinity at the maximum. 
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